
PIMA-Logic: A Novel Processing-in-Memory Architecture for
Highly Flexible and Energy-Efficient Logic Computation

Shaahin Angizi, Zhezhi He and Deliang Fan
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816

{angizi,elliot.he}@knights.ucf.edu,dfan@ucf.edu

ABSTRACT

In this paper, we propose PIMA-Logic, as a novel Processing-in-

Memory Architecture for highly flexible and efficient Logic compu-

tation. Instead of integrating complex logic units in cost-sensitive

memory, PIMA-Logic exploits a hardware-friendly approach to im-

plement Boolean logic functions between operands either located

in the same row or the same column within entire memory ar-

rays. Furthermore, it can efficiently process more complex logic

functions between multiple operands to further reduce the latency

and power-hungry data movement. The proposed architecture is

developed based on Spin Orbit Torque Magnetic Random Access

Memory (SOT-MRAM) array and it can simultaneously work as a

non-volatile memory and a reconfigurable in-memory logic. The

device-to-architecture co-simulation results show that PIMA-Logic

can achieve up to 56% and 31.6% improvements with respect to

overall energy and delay on combinational logic benchmarks com-

pared to recent Pinatubo architecture. We further implement an

in-memory data encryption engine based on PIMA-Logic as a case

study. With AES application, it shows 77.2% and 21% lower en-

ergy consumption compared to CMOS-ASIC and recent RIMPA

implementation, respectively.

ACM Reference format:

Shaahin Angizi, Zhezhi He and Deliang Fan. 2018. PIMA-Logic: A Novel

Processing-in-MemoryArchitecture forHighly Flexible and Energy-Efficient

Logic Computation. In Proceedings of DAC ’18: The 55th Annual Design Au-

tomation Conference 2018, San Francisco, CA, USA, June 24–29, 2018 (DAC

’18), 6 pages.

DOI: 10.1145/3195970.3196092

1 INTRODUCTION

In the last two decades, Processing-in-Memory (PIM) architectures,

as a potentially viable way to solve memory wall challenge in

conventional Von-Neumann computer system (e.g., long memory

access latency, significant congestion at I/Os, limited memory band-

width and huge leakage power), have been well explored [1]. The

key concept behind PIM is to embed logic units within memory to

better exploit the external and internal memory bandwidth. This

can lead to remarkable saving in data communication energy and

latency besides providing an inherent in-memory parallelism for

data-processing. An ideal PIM architecture should be capable of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’18, San Francisco, CA, USA

© 2018 ACM. 978-1-4503-5700-5/18/06. . . $15.00
DOI: 10.1145/3195970.3196092

performing bit-wise operations used in a wide spectrum of applica-

tions [2]. The proposals for exploiting DRAM- [3] and SRAM-based

[4] PIM architectures can be found in recent literature. However,

they encounter inevitable drawbacks such as high leakage power

or initial data overwritten that hinder their further processing.

This topic has become even more intriguing by emerging non-

volatile memory (NVM) technology, such as Phase Change Memory

(PCM) [5] and resistive RAM (ReRAM) [1]. In early 2016, Everspin

announced 256MbMRAM chips based onMagnetic Tunnel Junction

(MTJ), as a spintronic paradigm, with interface speed similar to

DRAM and was planning 1Gb chips in near future [6]. Toshiba and

SK Hynix co-developed a 4-Gbit MRAM chip prototype shown in

IEDM 2016 [7]. Thus, MRAM technology becomes a promising high

performance NVM candidate for both last level cache and main

memory. Hence, PIM in the context of different NVMs, specially

using spintronic devices, without sacrificing memory capacity can

open a new way to efficient computing paradigm.

Representative works of such PIM architecture include Pinatubo

[2] as a general architecture capable of doing bulk bit-wise oper-

ations, MPIM [8] as a multi-purpose ReRAM-based PIM, PRIME

[1] and ISAAC [9] as dot-product engines for Neural Network ac-

celeration based on ReRAM, RIMPA [10] as a threshold logic PIM

architecture based on Domain Wall-RAM (DW-RAM) and STT-

MRAM based PIM in [11]. All these architectures can be recon-

figured to memory and computing modes where modified Sense

Amplifiers (SA) typically play major role in performing row-wise

or column-wise in-memory logic.

However, these recent PIM designs have a few limitations. First,

none of these designs can perform computing (Boolean logic func-

tions) between any two bits irrespective of their locations in the

memory array. As a matter of fact, processing data (operands) can

be stored in different memory locations with distinct physical ad-

dresses. Therefore, existing bit-wise PIM schemes unavoidably im-

pose multi-cycle operations to align operands in the same column

[2, 4] or row [10] to process data within memory. For instance,

RIMPA [10]/Pinatubo [2] require at least 2 cycles (read/write) to line

operands in the same row/column to realize a 2-input in-memory

AND function. Thus, this issue is a very important un-addressed

topic in previously reported PIM architectures [4]. Second, cur-

rent PIM schemes unavoidably rely on external processing unit

for performing more complex logic operations, otherwise PIM’s

performance degradation would be considerable due to multi-cycle

operations. For instance, addition can be more efficiently performed

by ALU rather than PIM platforms.

To mitigate associated PIM challenges, we propose PIMA-Logic,

as a novel PIM architecture capable of performing complex logic

computations. Our contributions in this work can be briefly listed as:

(1)We design an efficient and reconfigurable PIM architecture based

Pinned Layer
Tunneling barrier
Free Layer
Heavy Metal

(SHM)

X
Y

Z

Write 0 Write 1

MTJ RMTJ

RSHM/2 RSHM/2

R

W1 W2

(a)

0 1

IREAD

WWL

W
B

L

SL

RB
L

RWL

IWRITE

MTJ

SHM Operations
Write

‘1’(‘0’)
Read

WWL VDD 0

RWL 0 VDD
RBL 0 IREAD
WBL VWP (VWN) 0

SL 0 0

(b) (c)
Figure 1: (a) SOT-MRAM device structure, (b) Schematic and

(c) biasing conditions of SOT-MRAM bit-cell.

on SOT-MRAM with enhanced and modified peripheral circuitry;

(2) We pave a new way to further push the boundaries of PIM so

that bit-wise computations can be performed between operands

with flexible locations (either in the same row or column) within

memory. This further reduces the latency and power concerning

state-of-the-art PIM hardware; (3)We propose Resistive Unit (RUnit)

to PIMA-Logic to handle and accelerate complex in-memory logic

computations by realizing a majority logic after memory sense

amplifiers; (4) We implement an in-memory data encryption engine

design based on PIMA-Logic as a case study to further explore its

superior performance compared to counterparts.

2 PIMA-LOGIC
2.1 Device
Fig. 1a shows a Spin-Orbit Torque Magnetic Random Access Mem-

ory (SOT-MRAM) device structure with the composite structure

of spin Hall metal (SHM) and MTJ. Here, the resistance of MTJ

with parallel magnetization in both magnetic layers (data-‘0’) is

lower than that of MTJ with anti-parallel magnetization (data-‘1’).

To program free-layer magnetization, flow of charge current (±y)

through SHM (Tungsten, β −W [12]) will cause accumulation of op-

posite directed spin on both surfaces of SHM due to spin Hall effect

[13]. Thus, a spin current flowing in ±z is generated and further

produces spin-orbit torque (SOT) on the adjacent free magnetic

layer, causing switch of magnetization. The bit-cell structure of

2T1R SOT-MRAM and its biasing conditions are shown in Fig. 1b

and 1c, respectively. In this work, the magnetization dynamics of

the free ferromagnetic (FM) layer is modeled by LLG equation with

STT term and SHE term, as used in [14]. Note that the ferromagnets

in MTJ have In-plane Magnetic Anisotropy (IMA) in x-axis [13].

With the given thickness (1.2nm) of the tunneling layer (MgO), the

Tunnel Magneto-Resistance (TMR) of the MTJ is ∼ 168.5%.

2.2 Circuit and Architecture

2.2.1 General Overview. The general memory organization of

PIMA-Logic is shown in Fig. 2, inspired by Pinatubo architecture

[2] but with significant modifications to enhance overall system

performance. Memory chip is basically divided into multiple Banks

consisting of multiple Mats. Banks within the same chip typically

share I/O, buffer and banks in different chips working in a lock-step

manner. The Mats are connected to a Global Row Decoder (GRD)

Bank
Bank

RUnitBank

Bank

RUnit
buffer

I/O
Ctrl

RUnit

MAT

buffer
Ctrl

MATMAT

MATMATMAT

GBL
GWL

RUnit
bufferCtrl

Sub.Sub.

Sub.Sub.

GBL

GW
L

Inter-Bank computation Inter-MAT computation

Inter-Sub-array computation

MCD

M
R

D

SA

WD

Ctrl RUnit
In-Sub-array computation

BL

WL

Figure 2: PIMA-Logic Organization.

and a shared row buffer. Each Mat consists of multiple memory

sub-arrays. At the lowest memory level, each memory sub-array

encompasses Memory Row Decoder (MRD), Memory Column De-

coder (MCD), exclusive SA and Write Driver (WD).

According to the physical address of operands within memory,

PIMA-Logic Controller (Ctrl) can perform in-memory computa-

tion in two levels: 1) Inter-component (i.e. Bank, MAT and Sub-

array) computation employing the proposed Resistive Unit (RUnit)

and 2) In-sub-array computation employing both Conventional

Row-wise PIM and RUnit. Each sub-array can be considered as

a computing core in PIMA-Logic architecture. To perform inter-

component computation, first operand row is read into devised

buffer and accordingly second row is read via Global Bit Line (GBL).

Then, computation is accomplished by the RUnit that will be de-

scribed later.
2.2.2 Sub-Array Architecture. Fig. 3 depicts the PIMA-Logic sub-

array architecture and detailed modified peripheral circuitry. The

basic sub-array of PIMA-Logic (shown in L.H.S. of Fig. 3) mainly

consists of MRD, MCD, WD, SA, multiplexers (MDMUX, GMUX)

and RUnit. This architecture can be adjusted by Ctrl unit to work in

dual mode that perform both memory read-write and in-memory

logic operations. WD component B is modified such that can

select between data input coming from different sources (i.e. Din-

Intra, Din-Inter, RUnit, and GMUX). MRD C is modified based on

approach proposed in [2] such that two WLs can be selected and

sensed simultaneously. Fig. 3 A shows the architecture of 2×2

memory array. Each SOT-MRAM cell is associated with the Write

Word Line (WWL), Read Word Line (RWL), Write Bit Line (WBL),

Read Bit Line (RBL), Source Line (SL) to perform typical memory

operations. The peripheral decoders (active-high output) control

the activation of current path through the array. WDs are used with

the WBLs for providing the required write voltage. A voltage mode

SA [13] is connected to the RBL for sensing the total resistance in

the selected current path during read or computing mode. Here we

discuss about functionality of PIMA-Logic sub-array architecture:

Memory Write: To write a data bit in any of the SOT-MRAM

cells, write current should be injected through the heavy metal

substrate of SOT-MRAM. To activate this write current path (e.g.

for MRAM1 A), WWL1 should be activated by MRD and SL1

is grounded, while all the other word lines and source lines are

kept deactivated (floating). Data can come from different sources

and according to its value, positive (/negative) write voltage B

MCD

M
R

D

SA

mode

R R R R

R/2 R R/2 R

CMUX En
S1
S0

GMUX
MDMUX

RUnit

WD

add

SA
Out

Vref
Vsense

EN
M

EN
A

N
D

EN
O

R

Ise
ns
e

Ire
f

A C

Vp

R
Un

it
GM

U
X

D
in

-I
nt

ra

Vn

WBLAA CCC

it

WWL1
M
R
D

Rst

Req

VA VB VC

Out1 Out2

p

t

R G

Ctrllll

Command
Decoder

Cmd Add

Timing Ctrl

Data
flow
ctrl

SL

D D
in

-I
nt

er

Vi

D

Rc

VA
VB Maj3

Rc c c c VC

Min3Rb
Ra

Vi = (Ra
Ra+Rb+Rc

VA +

Ra+Rb+Rc
VB +Rb

Ra+Rb+Rc
VC)Rc

SA if Ra=Rb=Rc=R:

Rc

VA
VB AND3
VC

NAND3Rb
Ra

R/2

R

VA
VB OR2

R

NOR2Rb
Ra

RR

VAVV
VBVV OR2

R R

NORN 2Rb Rb b Rb
RaRaa

VBVV

RcR

VAVV
VBVV ANDAA 3

Rc cccVCCVV

NANDN 3RbRbbRb
RaRaa

RRRR///RRRR 2222/////

R

if Ra=Rb=R

if Ra=Rb=Rc=R

Out

R
re

f,M

R
re

f,
AN

D

R
re

f,O
R

WWL1

W
BL

1

SL1

RB
L1

RWL1

W
BL

2

RB
L2

WWL2

SL2
RWL2

M
RD

MCD

V1 V2

MRAM1

S
A

MRAM2

B

Figure 3: The PIMA-Logic sub-array architecture. Left: block level sub-array architecture, Middle: SOT-MRAM realization,

and Right: functional blocks used in sub-array. Glossary: CMUX: Control Mux located at RUnit, Din-Intra: Data input to sub-

array, Din-Inter: Data input coming from other sub-arrays, GMUX: Global Mux for interfacing with intra- and inter-subarrays,

MDMUX: Mode D-Mux specially designed to select Runit for more complex computations.

should be assigned. Therefore, in order to write ‘1’ (/ ‘0’), WD

sets WBL1 to Vp (/Vn) write voltage. This allows sufficient charge

current (∼120 μA) flows from V1 to ground (/ground to V1), leading

to MTJ resistance in High-RAP (/Low-RP) encoded as data ‘1’ (/ ‘0’).
Memory Read: For typical memory read, a single memory cell

is selected to compare its sense voltage (Vsense) with a reference

voltage (Vref) by injecting a small sense current (Isense) through

the selected SOT-MRAM cell. To activate this read current path for

example for MRAM1 A , RWL1 is activated while SL1 is grounded

and all the other word lines and source lines are kept deactivated.

MCD activates the RBL1 line to be connected to the SA. Hence, a

read current flows from the selected SOT-MRAM cell to ground,

generating a sense voltage at the input of SA D , which is compared

with memory mode reference voltage (Vsense,P<Vref<Vsense,AP).

This reference voltage generation branch is selected by setting

the Enable values (ENM ,ENAND ,ENOR)= (1,0,0). This selection is

performed by the command issued by Ctrl unit.

Conventional Row-wise PIM Operation: In this read based

computation, every two bits stored in the identical column can be

selected and sensed simultaneously as depicted in Fig. 3 A . To

activate the computing current path (as shown in Fig. 3 A), RWL1

and RWL2 are activated by MRD while SL1 and SL2 are grounded

and all the other word/source lines are kept deactivated. Then, the

equivalent resistance of such parallelly connected SOT-MRAMs

(MRAM1 and MRAM2) and their cascaded access transistors are

compared with a specific reference by SA. Through selecting dif-

ferent reference resistances (ENM ,ENAND , ENOR), the SA D

can perform basic in-memory Boolean functions (i.e. AND/NAND

and OR/NOR). For AND operation, Rr ef is set at the midpoint of

RAP //RP (‘1’,‘0’) and RAP //RAP (‘1’,‘1’) and for OR operation, Rr ef
is set at the midpoint of RP //RP and RP //RAP .

Fig. 4a depicts the transient simulation result of the sense cir-

cuit under the 2ns period clock signal (CLK), which takes the data

stored in MRAM1 and MRAM2 as inputs. When CLK is high, SA is

in pre-charge phase and the output is reset to ‘0’. When CLK is low,

the sense amplifier is in sampling phase, and generates logic com-

putation result depending on the reference voltage configuration.

Furthermore, to validate the variation tolerance of sense circuit,

we have performed Monte-Carlo simulation with 100000 trials. A

σ = 5% variation is added on the Resistance-Area product (RAP),

and a σ = 10% process variation is added on the TMR (typical MTJ

conductance variation[15]). The simulation result of sense voltage

(Vsense) distributions in Fig. 4b shows the sense margin of such

PIM architecture. It will be reduced by increasing the logic fan-in

(i.e. number of parallel memory cells). Thus, to avoid read failure

(overlapping of Vsense distribution), only two fan-in row-wise in-

memory logic is used. Note that parallel computing/read within

sub-array is implemented by using one SA per bit-line with exact

same mechanism.

New Column-wise Majority Operation Using RUnit: We

propose RUnit as a low-overhead and highly-efficient solution to

process operands located in one memory row either in sub-array

or inter-component level. In sub-array level, we have devised a

Mode demultiplexer (MDMUX) to switch between conventional

PIM mode or proposed enhanced one (PIM+RUnit). As it can be

seen in block-level sub-array architecture, the output of each SA

is routed to MDMUX. According to the mode selector, output data

can be routed to either GMUX or RUnit. The key idea behind RUnit

is to realize a majority logic after SAs to further process the data

avoiding unnecessary write-back and accelerating in-memory pro-

cessing. As shown in Fig. 3 F , in-block circuit design of RUnit

consists of n resistors (n = #o f SA) that can parallelly contribute

to design a voltage divider driving a static CMOS inverter. To do

(a) (b)

0

0.5

1

(V
) A

B
C

0 1 2 3 4
time (ns)

0

0.5

1

(V
) Maj

Min

(c)
Figure 4: (a) Transient simulation of row-wise AND/OR com-

putation, (b) Monte Carlo simulation result of Vsense distri-

bution, (c) Transient simulation of RUnit realizing majority

and minority functions when (En, S1, S2)=(0,x,x).

the computation, MCD is modified (similar to that of MRD) such

that it can activate more than one RBL at the same time. As a result,

more than one column can be sensed and routed from SAs to RUnit.

Considering similar resistance (R), input voltage of inverter (Vi) can
be simply derived,

Vi =
k .VDD
w

(1)

where k denotes the number of SA outputs carrying VDD andw
represents the total number of unit resistors (R) connected to the

inverter. Thus, first inverter acts as a threshold detector by ampli-

fying deviation from VDD
2 and realizes a minority function. Then,

second inverter yields majority function output. In addition to ma-

jority/minority function-based computing, RUnit is equipped with

CMUX in order to assign different weighted inputs toVi . This could
be used to directly implement column-wise multi-input AND/OR

functions. For instance, as shown in Fig. 3 F , 3-input AND/NAND

functions can be efficiently designed by setting (En, S1, S2)=(1,1,1).
To avoid logic failure due to large number of inputs, causing the Vi
to be close to VDD

2 , we have limited the number activated columns

to three. However, when CMUX is deactivated ((En, S1, S2)=(0,x,x)),
our simulations showed that up to five columns can be reliably

sensed and computed. To better explain the proposed circuit, let’s

assume A, B and C operands are located in the way shown in L.H.S

of Fig. 3. For calculating the minority and majority functions in

a single cycle, 3 RBLs are activated simultaneously and sensed.

CMUX is set by Ctrl to (En, S1, S2)=(0,x,x). We expect the result of

sensed RBLs to be 0 after second inverter if at least two of the three

SA outputs are ‘0’ (k = 0, 1), and the result to be VDD , if at least
two of three SA outputs are carrying ‘1’(k = 2, 3), in this way:{

Vi <
VDD
2 ⇒ VOut1 = 0, k = 0, 1

Vi >
VDD
2 ⇒ VOut1 = VDD , k = 2, 3

(2)

Transient simulation result of RUnit performingminority/majority

functions is depicted in Fig. 4c considering A, B and C as inputs. It

is noteworthy that considering data that is not aligned neither in a

same row nor column, PIMA-Logic’s column-wise and row-wise

operations need more than one cycle to line data in either same

row or column to perform the computation.

Fig. 5 intuitively depicts performing some simple Boolean func-

tions within PIMA-Logic compared to Pinatubo [2]. As it can be

seen, A and B operands can be processed (AB) efficiently in one

single cycle regardless of their physical address using conventional

row-wise PIM operation (Conv. PIM) and column-wise operation

using RUnit of PIMA-Logic. However, similar function is imple-

mented in 3 cycles using Pinatubo when operands are not aligned

in one column . This can be further explored while computing more

complex logic functions. As shown, majority function (AB+AC+BC)
can be computed in one single cycle using PIMA-Logic, however

Pinatubo needs more than 10 cycles to perform such function.

In inter-component level, we consider two RUnit per component

(Sub-array, MAT, Bank). If the operands are in different subarrays

(/MATs/Banks) within one MAT (/Bank/memory chip), PIMA-Logic

performs inter-component operations employing RUnit added on

the row buffer. The first operand row is read into devised buffer and

accordingly second operand is read via GBL. After computation,

the final result is latched in the row buffer.

AB+AC+BCAB AB

PIMA-Logic Pinatubo
AB+AC+BC

AB ABAB
AAACCC++CCC BB++

Figure 5: Performing Boolean functions using PIMA-Logic

and Pinatubo [2].

For further exploration, we perform two experiments to thrive

the superiority of PIMA-Logic compared to two recent PIM ar-

chitectures (i.e. RIMPA [10] and Pinatubo [2]). Table 1 tabulates

the synthesis of 13 standard functions [16], to represent all 256

possible 3-variable Boolean functions, utilizing different platforms.

To perform an impartial comparison, we first assume that initial

physical addresses for all operands are either in the same column

(CS) or same row (SR). Based on Table 1, PIMA-Logic can show up

to 36.5% and 43.9% improvement in terms of average number of

cycles compared to RIMPA and Pinatubo, respectively for process-

ing 13 functions with SR condition. In second experiment, data is

randomly-distributed (RD) in memory and we perform the compu-

tation. In this case, PIMA-Logic can show up to 43.1% and 50.8%

improvements compared to RIMPA and Pinatubo, respectively.

As an instance of combinational logic circuits, we show the

realization of a full-adder within PIMA-Logic in Fig. 6. Assuming A,
B and C are initially located in a memory row, Carry output (Cout)
is generated in a single cycle (see function 9 in Table 1), accordingly

Sum can be generated as Sum = M5(A,B,C,Cout ,Cout) after three
cycles. We generalize the idea by implementing an efficient in-

memory 4-bit ripple Carry Adder (RCA). As shown, column-wise

computation employing RUnit could be adopted to realize such

complex circuit very efficiently.

Table 1: Synthesis comparison of the 13 standard functions.
No. Standard Function RIMPA[10] Pinatubo[2] PIMA-Logic

SC SR RD SC SR RD SC SR RD

1 F=AB’C 7 5 5 5 7 9 5 3 3

2 F=AB 3 1 3 1 3 5 1 1 1

3 F=A’BC+A’B’C’ 19 15 17 15 19 17 9 11 9

4 F=A’BC+AB’C’ 13 17 13 13 17 17 11 11 9

5 F=A’B+BC’ 13 9 11 9 13 11 9 7 7

6 F=AB’+A’BC 11 11 11 11 11 15 9 7 7

7 F=A’BC+ABC’+A’B’C’ 21 25 21 21 25 25 13 13 11

8 F=A 1 1 1 1 1 1 1 1 1

9 F=AB+BC+CA 5 1 3 7 13 11 5 1 1

10 F=A’B+B’C 9 9 9 9 9 11 9 5 5

11 F=A’B+BC+AB’C’ 17 21 19 17 21 21 17 13 11

12 F=AB+A’B’ 11 9 9 1 3 3 5 5 5

13 F=ABC’+A’B’C’+AB’C+A’BC 33 29 31 29 31 31 25 19 17

Total Number of Cycles 162 153 153 139 173 177 119 97 87

Average Number of Cycles 12.46 11.76 11.76 10.69 13.3 13.6 9.15 7.46 6.69

Improvement Percentage 26.5% 36.5% 43.1% 14.4% 43.9% 50.8% - - -

R

Cout Coou Sum

R

W

full adder 4-bit RCA

Figure 6: Realization of in-memory full adder and 4-bit RCA.

3 PERFORMANCE EVALUATION

3.1 Logic Performance

To evaluate logic performance of PIMA-Logic, we first need to ex-

tract device-to-circuit level data. The simulation is initially carried

out in Cadence Spectre with NCSU 45nm CMOS PDK [17]. SOT-

MRAM device model of Fig. 1a is used in the circuit simulation. MTJ

resistance (RMTJ) is obtained from the NEGF approach [18], while

the heavy metal resistance (RHM) is calculated based on the resis-

tivity and device dimension. Accordingly, a logic netlist in Berkeley

Logic Interchange Format (.blif) is fed into ThrEshold Logic Synthe-

sizer (TELS) [19] to obtain synthesized logic networks. Meanwhile,

parameters such as fan-in restriction is set up during the synthesis.

The synthesized networks are then mapped to PIMA-Logic using an

in-house developed Matlab code to assess the performance. Fig. 7

gives ISCAS85 combinational circuit benchmarks implemented us-

ing PIMA-Logic, RIMPA [10] and Pinatubo [2]. To have an impartial

comparison, Pinatubo, as a general system architecture for non-

volatile memories, is implemented with both standard STT-MRAM

and identical SOT-MRAM cell depicted in Fig. 1b.

c1
7
c4

32
c4

99
c8

80

c1
35

5

c1
90

8

c2
67

0

c3
54

0

c5
31

5

c6
28

8

c7
55

2
1e-4

1e-3

1e-2

1e-1

1

E
ne

rg
y

(n
J)

PIMA-Logic
Pinatubo-SOT
RIMPA
Pinatubo-STT

c1
7
c4

32
c4

99
c8

80

c1
35

5

c1
90

8

c2
67

0

c3
54

0

c5
31

5

c6
28

8

c7
55

2
0

50

100

150

200

D
el

ay
 (

ns
)

PIMA-Logic
Pinatubo-SOT
RIMPA
Pinatubo-STT

(a) (b)
Figure 7: (a) Energy consumption and (b) Delay of ISCAS85

benchmarksmapped to three different PIM architectures (Y-

axis in energy plot: Log scale).

As shown, PIMA-Logic exhibits lowest energy and delay com-

pared to the counterparts in different benchmarks. We observe

that (1) PIMA-Logic reduces the energy consumption by ∼56%, 67%

and 74.4% compared to Pinatubo-SOT, Pinatubo-STT and RIMPA,

respectively. This considerable improvement mainly comes from

proposed logic efficiency and reduced-cycle operations. (2) PIMA-

Logic outperforms mentioned PIM architectures with 31.6%, 40%

and 52% reduction in delay on different benchmarks. It is worth

pointing out that for five more complex benchmarks (i.e. c2670,

c3540, c5315, c6288 and c7552), as logic complexity increases, PIMA-

Logic can show much better performance compared to the rest.

3.2 Memory Performance
In order to achieve the overall memory performance of PIMA-Logic

as an SOT-MRAM based architecture with modified peripheral

circuitry, we extensively modified the system level memory evalua-

tion tool NVSim [20] to co-simulate with an in-house developed

C++ code based on circuit level results. Table 2 tabulates and com-

pares the memory performance (Write (W)/Read (R)) of PIMA-Logic

based on SOT-MRAM with three different memory candidates for

a sample 4MB memory chip in 45nm process node.

Table 2: Memory Model Comparison
SRAM

4MB

DRAM

4MB

Standard STT-MRAM

4MB

PIMA-Logic

4MB

Metrics W R W R W R W R

Latency (ns) 1.07 0.9 2.7 2.4 10.2 1.08 1.31 1.1

Dynamic Energy (pJ) 297.4 312.5 967 1483 368.5 232.2 302.7 275.4

Leakage Power (mW) 5258 585.4 744.2 782.5

Area (mm2) 10.544 6.504 5.963 6.164

In our simulations, we follow iso-capacity constraint where sim-

ilar memory capacity is used for all the candidates. As expected,

magnetic memories and DRAM show smaller area overhead com-

pared to SRAM. PIMA-Logic memory model imposes 41.5% less

area compared to SRAM with same memory configuration. Besides,

the magnetic memory models save a lot of leakage power compared

to SRAM due to their non-volatility nature. PIMA-Logic also out-

performs other candidates in terms of dynamic energy owning to

its low write voltage (∼400mV for‘1’ and ∼-320mV for‘0’). Albeit,

SOT-MRAM array design used in PIMA-Logic improves the write

energy and latency compared to standard STT-MRAM and DRAM,

all magnetic candidates have shown longer write latency compared

to SRAM due to longer write period of magnetic storage devices.

3.3 Area Overhead

Fig. 8 shows break-down of area overhead resulted from add-on

hardware to memory chip. Our experiments show that totally PIMA-

Logic imposes 1.4% area overhead to original memory die, where

Pinatubo [2] and RIMPA [10] incur 0.9% and 17% area overhead,

respectively. It can be seen that modified controller and drivers

contribute more than 50% of this area overhead in a Bank.

24%

16%

4% 11%

12%

33%

0

50%

100%

RUnit

Controller

misc

Voltage driver

 Ctrl

WBL and RBL
 drivers

Output driver

PCSA Modified decoders &
 add-on mux

Figure 8: Area overhead of PIMA-Logic within one Bank

4 APPLICATION: DATA ENCRYPTION

In this section, we evaluate the performance of PIMA-Logic as

an in-memory data encryption engine for Advanced Encryption

Standard (AES) algorithm [21]. AES works on the standard input

length of 16 bytes data organized in a 4×4 matrix (state matrix)

while using 3 different key lengths (128, 192, 256 bits). For 128-

bit key length, AES encrypts the input data after 10 rounds of

consecutive transformations, i.e. SubBytes, ShiftRows, MixColumns,

and AddRoundKey (Fig. 9a).

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

S4,4[7]

S3,4[7]

S2,4[7]

S1,4[7]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

7777]7S4,4[6]

7777]7

7777]7

S3,4[6]

7777]7

7777]7

S2,4[6]

7777]7

7777]7

S1,4[6]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

666]]66S4,4[5]

666]]66

]]

S3,4[5]

666]]66S2,4[5]

666]]66

]]

S1,4[5]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

555]5S4,4[0]

555]5S3,4[0]

555]5S2,4[0]

555]5S1,4[0]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

]]]S4,4[3]

]]]

]]]]

S3,4[3]

]]]

]]]]

S2,4[3]

]]]

]]]]

S1,4[3]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

333]3S4,4[2]

333]3

3333]3

S3,4[2]

333]3

3333]3

S2,4[2]

333]3

3333]3

S1,4[2]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

222]]22S4,4[1]

222]]22S3,4[1]

222]]22S2,4[1]

222]]22

]

S1,4[1]

S4,1

S3,1

S2,1

S1,1

1 S4,2

1 S3,2

1 S2,2

1 S1,2

2 S4,3

2 S3,3

2 S2,3

2 S1,3

3 S4,4

3 S3,4

3 S2,4

3 S1,4

M

LUT

M

Buffer

M

LUT

XOR
M

XOR

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

]] S4,2[0]

]] S3,2[0]

]] S2,2[0]

]] S1,2[0]

]]] S4,3[0]

]]] S3,3[0]

]]] S2,3[0]

]]] S1,3[0]

111]
]]] S4,4[0]

111]
]]] S3,4[0]

111]
]]] S2,4[0]

]]] S1,4[111111[[[[]00000]0
]]] S1,4[0]S1,1[0[[]0]]] S

S1,1[0]- S1,1[7]

S4,1

S3,1

S2,1

S1,1

S4,2

S3,2

S2,2

S1,2

2 S4,3

2 S3,3

2 S2,3

2 S1,3

3 S4,4

3 S3,4

3 S2,4

3 S1,4

S4,4

S3,3

S2,2

S1,1

4 S4,1

3 S3,4

2 S2,3

S1,2

1 S4,2

4 S3,1

3 S2,4

2 S1,3

2 S4,3

1 S3,2

4 S2,1

3 S1,4

S4,1

S3,1

S2,1

S1,1

S4,2

S3,2

S2,2

S1,2

2 S4,3

2 S3,3

2 S2,3

2 S1,3

3 S4,4

3 S3,4

3 S2,4

3 S1,4

03
01
01
02

01
01
02
03

01
02
03
01

02
03
01
01

Figure 9: (a) AES block diagram, (b) Data organization, (c)

AES’s ShiftRows and MixColumns transformation, (d) Map-

ping of four AES transformations to PIMA-Logic.

To facilitate working with input data as depicted in Fig. 9b, each

byte in input data is distributed into 8-bit. So, 8 memory arrays are

filled by 4×4 bitmatrices. Mapping of four AES transformations to

PIMA-Logic is shown in Fig. 9d. For evaluation of AES performance

in general purpose processor (GPP), we have used similar method

in [22] at 2GHz. AES C code is extracted from [21] and compiled,

then cycle-accurate architecture simulator gem5 [23] is employed

to take AES binary and accordingly system level processor power

evaluating tool McPAT [24] is used to estimate power dissipation.

For evaluation of AES in CMOS ASIC (1.133GHz), Synopsys Design

Compiler tool is used. Here, the performance for all the platforms

are listed in Table 3 in 32nm technology. For fair comparison, we

have done fixed-voltage scaling of the results obtained from of our

work to 32nm by using the appropriate scaling factor- which is

(1/S2) for area and (1/S) for energy [25], here S= L/32nm, where

L=45nm. The device-to-architecture co-simulation results show

that PIMA-Logic can achieve 77.2% and 21% lower energy con-

sumption compared to CMOS-ASIC and RIMPA implementations,

respectively at 30MHz. Furthermore, PIMA-Logic occupies ∼ 3×

less area compared to baseline DW-AES.

Table 3: Comparison of 128-bit AES implementations.

Platforms Energy (nJ) Cycles Area (μm2)

GPP [21] 460 2309 2.5e+6

ASIC [26] 6.6 336 4400

CMOL[27] 10.3 470 320

Baseline DW [22] 2.4 1022 78

Pipelined DW [22] 2.3 2652 83

Multi-issue DW [22] 2.7 1320 155

RIMPA [10] 1.9 1084 92

PIMA-Logic 1.5 872 27

5 CONCLUSION

In this paper, we proposed PIMA-Logic as a novel memory architec-

ture to further push the boundaries of processing-in-memory so that

complex bit-wise computations can be performed between locally-

flexible operands (either in the same row or in the same column)

within memory. The device-to-architecture simulation results show

that PIMA-Logic can achieve up to 56% and 31.6% improvements

with respect to overall energy and delay on large scale logic bench-

marks compared to well-designed Pinatubo equally-implemented

with SOT-MRAM arrays.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science Foundation

under Grant No. 1740126 and Semiconductor Research Corporation

nCORE
REFERENCES
[1] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural

network computation in reram-based main memory,” in ISCA, vol. 43, 2016.
[2] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise

operations in emerging non-volatile memories,” in 2016 53nd DAC. IEEE, 2016.
[3] V. Seshadri and O. Mutlu, “Simple operations in memory to reduce data move-

ment,” Advances in Computers, 2017.
[4] S. Aga et al., “Compute caches,” in HPCA, 2017 IEEE International Symposium on.

IEEE, 2017, pp. 481–492.
[5] B. C. Lee et al., “Architecting phase changememory as a scalable dram alternative,”

in ACM SCAN, 2009.
[6] “Everspin stt. 2016. url: https://www.everspin.com/news 256mb-perpendicular-

spin-torque-mram.”
[7] S.-W. Chung et al., “4gbit density stt-mram using perpendicular mtj realized with

compact cell structure,” in IEDM. IEEE, 2016.
[8] M. Imani et al., “Mpim: Multi-purpose in-memory processing using configurable

resistive memory,” in ASP-DAC. IEEE, 2017, pp. 757–763.
[9] A. Shafiee and other, “Isaac: A convolutional neural network accelerator with

in-situ analog arithmetic in crossbars,” in 43rd ISCA, 2016.
[10] S. Angizi et al., “Rimpa: A new reconfigurable dual-mode in-memory processing

architecture with spin hall effect-driven domain wall motion device,” in ISVLSI.
IEEE, 2017.

[11] W. Kang et al., “In-memory processing paradigm for bitwise logic operations in
stt-mram,” IEEE TMAG, 2017.

[12] C.-F. Pai et al., “Spin transfer torque devices utilizing the giant spin hall effect of
tungsten,” Applied Physics Letters, 2012.

[13] X. Fong et al., “Spin-transfer torque devices for logic and memory: Prospects and
perspectives,” IEEE TCAD, vol. 35, 2016.

[14] Z. He et al., “A low power current-mode flash adc with spin hall effect based
multi-threshold comparator,” in ISLPED. ACM, 2016.

[15] H. Noguchi et al., “Novel voltage controlled mram (vcm) with fast read/write
circuits for ultra large last level cache,” in IEDM, 2016.

[16] R. Zhang et al., “A method of majority logic reduction for quantum cellular
automata,” IEEE TNANO, vol. 3, no. 4, pp. 443–450, 2004.

[17] (2011) Ncsu eda freepdk45. [Online]. Available: http://www.eda.ncsu.edu/wiki/
FreePDK45:Contents

[18] G. Panagopoulos et al., “A framework for simulating hybrid mtj/cmos circuits:
Atoms to system approach,” in DATE, 2012.

[19] R. Zhang et al., “Threshold network synthesis and optimization and its application
to nanotechnologies,” IEEE TCAD, vol. 24, 2005.

[20] X. Dong et al., “Nvsim: A circuit-level performance, energy, and area model for
emerging non-volatile memory,” in Emerging Memory Technologies. Springer,
2014, pp. 15–50.

[21] K. Malbrain, “Byte-oriented-aes: a public domain byte-oriented implementation
of aes in c,” 2009.

[22] Y. Wang et al., “Dw-aes: A domain-wall nanowire-based aes for high throughput
and energy-efficient data encryption in non-volatile memory,” IEEE TIFS, 2016.

[23] N. Binkert et al., “The gem5 simulator,” vol. 39, 2011.
[24] S. Li et al., “Mcpat: an integrated power, area, and timing modeling framework

for multicore and manycore architectures,” in MICRO. ACM, 2009, pp. 469–480.
[25] A. Stillmaker et al., “Toward more accurate scaling estimates of cmos circuits

from 180 nm to 22 nm,” VLSI Computation Lab, ECE Department, University of
California, Davis, 2011.

[26] S. Mathew et al., “340 mv–1.1 v, 289 gbps/w, 2090-gate nanoaes hardware ac-
celerator with area-optimized encrypt/decrypt gf (2 4) 2 polynomials in 22 nm
tri-gate cmos,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1048–1058, 2015.

[27] Z. Abid et al., “Efficient cmol gate designs for cryptography applications,” IEEE
transactions on nanotechnology, vol. 8, pp. 315–321, 2009.

